Comparative genomics of streptococcal species

Joseph J. Ferretti, Dragana Ajdic & W. Michael McShan*

Departments of Microbiology & Immunology & *Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA

Received August 6, 2003

Microbial genome sequencing has produced an unprecedented amount of new information and insights into an organism’s metabolic activities, virulence properties, and evolution. The complete genome sequence has been reported for four different species of streptococci, including *Streptococcus pyogenes*, *S. agalactiae*, *S. pneumoniae* and *S. mutans*. Comparative genome analysis among organisms of the same species not only shows a high degree of similarity in gene content and organization, but also a high degree of sequence heterogeneity as evidenced by the large number of single nucleotide polymorphisms present. Considerable differences were also observed in the number of mobile genetic elements found in each organism, including complete and partial bacteriophage genomes, IS elements, transposons, and plasmids. *S. pyogenes* was the only species to contain complete bacteriophage genomes in its genome, while only *S. pneumoniae* and *S. mutans* contained the full complement of competence genes essential for natural transformation. Comparative genome analysis between the species showed that *S. pyogenes* was more closely related to *S. agalactiae* than with *S. pneumoniae* or *S. mutans*.

Key words Genomes of *Streptococcus pyogenes* - *S. agalactiae* - *S. mutans* - *S. pneumoniae*

The availability of the complete genome sequence of bacterial genomes in recent years has provided new avenues of investigation for the further understanding of microbial pathogenesis, regulation, diversity, and evolution. Since 1995, over 180 complete genome sequences have been reported, with an approximate 500 genomes in progress (http://wit.integratedgenomics.com/GOLD/). The complete genome sequence has been determined for four different species of streptococci, microorganisms known to be pathogens responsible for various human diseases; e.g., *Streptococcus pyogenes* (strep throat, flesh-eating disease, scarlet fever, rheumatic fever, acute glomerulonephritis), *S. agalactiae*, (neonatal sepsis and meningitis, adult invasive infections), *S. pneumoniae* (otitis media, sepsis, pneumonia), and *S. mutans* (dental caries, tooth decay). Interestingly, more genomes of bacteria classified as streptococci have been sequenced than any other genus, including several serotypes of each. The eventual completion of the *S. uberis* and *S. equi* genomes presently in progress (http://www.sanger.ac.uk/Projects/Microbes/) will increase this number. In this review, we summarize the major findings of each genome along with a comparative analysis of the same and different species of streptococcal pathogens. Such a comparative analysis can provide further insight into species and strain uniqueness, and importantly, can stimulate new studies and approaches into disease prevention and treatment.

Streptococcus genomes

The complete genome sequences of four different species of streptococci have been reported and a brief description of each is presented below.

(i) *Streptococcus pyogenes* (group A streptococci, GAS): The genomes of six strains of GAS have been or are nearly completed and most of these sequences are
or will be publicly available. These include serotype strains of M1, M3, M5 (unpublished, see http://www.sanger.ac.uk/Projects/S_pyogenes/), M18, and M49 (McShan et al, unpublished). A typical circular representation of a GAS genome is presented in Figure, showing the location of genes on each strand and illustrating the transcription of genes originating at oriC in both directions and terminating at approximately 180°. The overall characteristics of each genome are similar in terms of base composition, gene arrangement, metabolic and physiologic genes, and virulence and pathogenicity genes. However, the recently completed genomes of an M3 strain and the M5 Manfredo strain (http://www.sanger.ac.uk/Projects/S_pyogenes/) indicate the presence of a large-scale inversion around the origin and terminus as compared to other GAS genomes. These inversions in genomes appear to be typical for such events in maintaining the symmetry of the origin and terminus, and such events may be common features during bacterial genome evolution. However, the significance of these inversions in regard to strain survival or virulence is unknown.

The comparison of the homologous regions of each genome shows that the most common source of sequence heterogeneity is the large number of single nucleotide polymorphisms found in the coding sequences. The most striking difference between all of the genomes is the number of bacteriophage genomes present, ranging from one to six prophages and accounting for up to 10 per cent of the total base pairs. These phage genomes are similar in functional organization, but show significant differences in size and individual gene content, most likely representing extensive recombination between the phage genomes. Interestingly, these GAS phages are most closely related to those found in the genomes of the non-pathogenic dairy bacterium, Streptococcus thermophilus suggesting that horizontal gene flow may be occurring or has occurred in the past between these streptococci with vastly different life styles. However, the phages of S. pyogenes differ significantly from the phages of the non-pathogenic streptococci in one important aspect: in most instances, the phages also contain genes specifying virulence factors such as the streptococcal erythrogenic toxins (SPE, pyrogenic exotoxins) that are capable of acting as superantigens that stimulate the immune system to produce shock mediating cytokines. In all of these temperate phages characterized so far, the toxin genes are positioned at the distal end of the integrated phage genome (with respect to the integrase gene), suggesting that these genes may have been acquired in the past through some aberrant excision event where host genomic material was acquired by the phage. However, the ultimate source of the erythrogenic toxin genes and their homologues from other Gram-positive organisms such as Staphylococcus aureus remains unknown since no non-phage associated example of these toxins has been found.

With the increased number of GAS genomes sequenced numerous new phage genomes have been identified and consequently the number of SPEs has increased from 3 in the 1960s to over 20 at the present time. Given the high frequency of horizontal gene transfer in the GAS, the numbers of SPEs identified will no doubt increase as additional genomes are sequenced. The integration of these temperate phages generates a duplication of part of the host genome so that host gene functions are typically uninterrupted. However, in the M1 SF370 genome, a defective phage genome (phage SF370.4) is found integrated between two key genes responsible for DNA mismatch repair (MMR), mutS and mutL. This separation is
predicted to interfere with the transcription of \textit{mutL}
and thus leave this strain defective for MMR. Since
many clinical isolates of pathogenic bacteria are often
defective for MMR, it has been proposed that such
defects may allow for rapid adaptation in response to
environmental stress7,8. Therefore, this unusual phage-
mediated defect may be important in pathogenesis or
survival of some GAS in the human host. Importantly,
these overall results indicate the increased pathogenic
potential of the GAS and the role of bacteriophages
in the horizontal transfer of virulence determinants
dand evolution of GAS.

Among the complete GAS genomes sequenced to
date, all are of the class I type, primarily associated with
rheumatic fever and severe invasive infections. The
eventual completion of a class II strain associated with
acute glomerulonephritis should provide new information
about differences between throat and skin strains.
Preliminary data in our laboratory so far with an M49
strain (NZ131) indicate that its genome harbours only
one bacteriophage genome and approximately sixty
unique, non phage-associated genes. A comparison of
selected features of GAS genomes is presented in
Table I.

(ii) \textit{Streptococcus agalactiae} (group B \textit{streptococci},
\textit{GBS}): The complete genome sequences of two of the
nine GBS serotypes III9 and V10 have been reported.
Of particular interest was the finding that most genes
apparently unique to specific strains of the same serotype
were found clustered in regions (islands). These islands
not only contained atypical nucleotide compositions
differing from the 35.7 per cent G+C content of the entire
genome, but also contained most of the known or putative
GBS virulence factors. Interestingly, all of these islands
also contained sequences known to be associated with
mobile genetic elements, \textit{e.g.}, insertion sequences,
proteins of phages, plasmids, and transposons, suggesting
that these islands correspond to horizontal gene transfer
events.

A large number of phage and plasmid-related genes
were identified in the chromosome of the serotype III
strain, however no complete temperate phage genomes
were found. Additionally, three copies of an approximate
50 kb sequence were present that had the characteristics
of an integrative plasmid. The association of mobile
elements and virulence factors in chromosomal islands
suggests that they may be pathogenicity islands and thus
have an important role in virulence acquisition and
genetic diversity.

(iii) \textit{Streptococcus pneumoniae}: Of the more than
90 capsule types, two genomes of \textit{S. pneumoniae} have
been sequenced, the original R6 strain (serotype 2)
used by Avery \textit{et al}11 to demonstrate that DNA was
the genetic material, and a virulent strain, TIGR4
(serotype 4)12,13. Genome sequence analyses confirm
the presence of a number of features that make this
organism a paradigm for recombination-mediated
genetic plasticity14. Prime among these features is that
\textit{S. pneumoniae} is naturally competent and highly
transformable and contains IS, BOX and RUP repetitive
elements that account for up to 5 per cent of the
genome’s sequence. By contrast, the \textit{S. pyogenes}
genome shows no evidence of such repeats15. These
sequences represent hotspots for genetic recombination,
accounting for a high degree of heterogeneity among
the species. Another important feature is the presence
of nearly 400 genes with iterative DNA motifs that
can result in phase variation. Interestingly, 25 of these
genes appear to be directly associated with the virulence
of the organism. There are also a large number of
duplicated genes, estimated to be more than 250, as
well as multiple gene clusters not present in all strains.
Of particular interest with respect to virulence is that
the penicillin binding proteins (PBP) contain mosaic
structures amenable to recombination, resulting in a
lower affinity for penicillin binding and increase in
resistance.

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Table I.} Comparison of general features of \textit{S. pyogenes} genomes & \textbf{SF370} & \textbf{MGAS315} & \textbf{Manfredo} & \textbf{MGAS8232} \\
\hline
\textbf{emm} type & M1 & M3 & M5 & M18 \\
\hline
Bp & 1,852,442 & 2,211,488 & 1,841,271 & 2,030,921 \\
\hline
ORFs & 1792 & 1865 & ND & 1845 \\
\hline
%G+C & 38.5 & 38.6 & 38.6 & 38.5 \\
\hline
RRNA & 6 & 6 & 6 & 6 \\
\hline
TRNA & 60 & 60 & 6 & 6 \\
\hline
TCS & 13 & 20 & 13+1RR & 13+1RR \\
\hline
Phages & 4 & 6 & ND & 5 \\
\hline
\end{tabular}
\end{table}

ND, not determined; ORF, open reading frames; TCS, two-component
regulatory systems
(iv) *Streptococcus mutans*: *S. mutans*, unlike the related pathogens *S. pyogenes* and *S. pneumoniae*, is part of the human oral flora and only incidentally an oral pathogen. As such, it differs from the pathogenic streptococci in several aspects of its basic physiology and in its adaptations to maintain an ecological niche. *S. mutans* is able to metabolize a wide variety of carbohydrates and can synthesize all of its required amino acids. To complement the number of carbohydrates it can use, *S. mutans* devotes a large portion of its coding potential (about 15%) to various transport mechanisms. The number of proteases, peptidases, and other exoenzymes produced by *S. mutans* clearly suggests that it derives resources from host tissues. The analysis of the genome sequence showed that around 16 per cent of the predicted ORFs specified unique genes. In contrast to the closely related low per cent G+C Gram-positive organisms *S. pyogenes*, *L. monocytogenes*, and *L. lactis*, no temperate bacteriophage genomes and no toxin genes are detectable in strain UA159. Finally, *S. mutans* possesses specific virulence factors including adhesins, glucan producing and binding exoenzymes, proteases and cytokine-stimulating molecules which help to protect the bacterium against possible host defenses and maintain its ecological niche in the oral cavity, while contributing to its ability to cause host damage.

Comparative genomics

The genome sequence of an organism provides information about size of the genome, base composition, complete gene content, physiology and metabolism, content of virulence factors, and lateral gene transfer events. A comparison of general features of selected streptococcal genomes is presented in Table II. Although these organisms have many features in common and evidently have common evolutionary ancestors, the variation of genome size in base pairs and a variance of G+C content of almost 10 per cent indicates that significant differences exist in their genomes. Among the noteworthy differences between the genomes is the content of mobile genetic elements. The GAS are the only species to contain complete bacteriophage genomes, indicating that this mechanism of horizontal gene transfer is an important factor in gene acquisition/loss, strain heterogeneity and in its overall evolution. *S. pneumoniae* and *S. mutans* have highly developed transformation systems, whereas natural transformation is not known to be a common event in GAS or GBS. Although GAS and GBS have many of the genes essential for competence and transformation, the fact that they have lost competence may have occurred because phages have assumed a more important role in population diversity.

An additional noteworthy difference is the number of two component regulatory systems found in GBS, which is higher than in the other organisms. A possible explanation could be that the GBS have greater adaptability than the other streptococci to react and survive in response to fluctuations in the external environment.

Table II. Comparison of general features of selected streptococcal genomes

<table>
<thead>
<tr>
<th></th>
<th>S. pyogenes</th>
<th>S. agalactiae</th>
<th>S. pneumoniae</th>
<th>S. mutans</th>
</tr>
</thead>
<tbody>
<tr>
<td>bp</td>
<td>1,852,442</td>
<td>2,211,488</td>
<td>2,160,837</td>
<td>2,030,921</td>
</tr>
<tr>
<td>ORFs</td>
<td>1,792</td>
<td>2,118</td>
<td>2,226</td>
<td>1,963</td>
</tr>
<tr>
<td>%G+C</td>
<td>38.5</td>
<td>35.6</td>
<td>39.7</td>
<td>36.8</td>
</tr>
<tr>
<td>rRNA operons</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>tRNA species</td>
<td>60</td>
<td>80</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>TCS</td>
<td>13</td>
<td>20</td>
<td>13 + 1RR</td>
<td>13 + 1RR</td>
</tr>
<tr>
<td>ABC Transporters</td>
<td>36</td>
<td>62</td>
<td>74</td>
<td>65</td>
</tr>
<tr>
<td>Phages (complete)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Transformable</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Strain SF370 (type M1); * S. agalactiae: Strain NEM316 (type III); S. pneumoniae: Strain TIGR4 (serotype 4); S. mutans: Strain UA159 (serotype c). ORF, open reading frames; TCS, two-component regulatory systems.

Table III. Per cent relatedness of streptococcal species based on a comparison of ORFs

<table>
<thead>
<tr>
<th></th>
<th>S. pyogenes</th>
<th>S. agalactiae</th>
<th>S. pneumoniae</th>
<th>S. mutans</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pyogenes</td>
<td>100</td>
<td>77</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>S. agalactiae</td>
<td>69</td>
<td>100</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>66</td>
<td>72</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>S. mutans</td>
<td>65</td>
<td>70</td>
<td>68</td>
<td>100</td>
</tr>
</tbody>
</table>

* Strain SF370 (type M1); * Strain NEM316 (type III); * Strain TIGR4 (serotype 4); * Strain UA159 (serotype c).
Genome comparisons can also be made by analyzing open reading frame (ORF) relatedness using a BlastP programme. The results of such a comparison are presented in Table III and the per cent relatedness of the ORFs was calculated as greater than or equal to 50 per cent similarity using the BlastP programme. These data indicate that the GAS are more closely related to GBS and vice versa than with either S. pneumoniae or S. mutans. Such an observation is in agreement with the previously determined phylogenetic relationships among the streptococci based on 16S rRNA sequence analysis.

Summary & conclusions

Sequence information has provided new information about genes involved in streptococcal virulence and pathogenesis, regulation, metabolism, and physiology. Particularly interesting are the mechanisms of horizontal gene transfer and how these organisms gain new virulence genes to increase their pathogenic potential as well as how horizontal gene transfer mechanisms affect genome plasticity and evolution. Additionally, the sequence data provide new information about the evolution of these organisms and how they change in order to evade human host immune recognition. Future detailed analyses of additional genomes will provide even more information essential for understanding the inter-relationships of these organisms and also the identification of unique targets for drug development and identification of candidate antigens for a universal vaccine. An overarching goal of studies such as these is an improved prevention and treatment of streptococcal diseases.

Acknowledgment

This work was supported by grant No. AI19304 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

References

Reprint requests: Dr J.J. Ferretti, Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center 1000 Stanton Young Blvd. Oklahoma City OK 73104, USA

e-mail: joe-ferretti@ouhsc.edu