Message

I am delighted to keep on record of the excellent progress and contribution of Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna for significant scientific achievements made towards the goal of prevention, control and treatment of Visceral leishmaniasis in Bihar. The contribution of the Institute in conducting clinical trials of anti-leishmanial drugs like Miltefosine and Paromomycin in collaboration with ICMR/WHO/TDR is remarkable.

The Council will make all endeavors to help this Institute to achieve its ultimate glory.

Prof. N.K. Ganguly
Director-General
I.C.M.R., New Delhi.
Preface

A series of landmark events marked the year 2002-2003. Revitalization of the Institute at different levels became evident as the WHO/TDR expressed its willingness to make it an important center for the clinical trials on Kala-azar in this region.

Staggering amount of capital works were accomplished in the year 2002-03. Building a new Tropical Disease Hospital (Samrat Ashoka Hospital), an extension of the existing 50-bedded hospital, is an enormous undertaking. The preliminary work of site preparation at the construction site was accomplished during this period. Preparation and processing of the EFC document was approved. It is envisaged to provide a state of the art medical research center for tropical diseases on the pattern of Mahidol Tropical Disease Research Center, Bangkok and School of Tropical Medicine, Calcutta.

Application of remote sensing technology (GIS) for identification of Kala-azar epidemic foci was pursued for the last three years bore fruitful and encouraging results. The satellite data of study areas have already been extracted. FCC map and Land use map, generated by RRSC, Kharagpur, were compared to find out the correlation of geographical distribution of vector, sandfly with environmental and land cover variables.

PCR based diagnosis of Visceral Leishmaniasis was initiated to compare its usefulness with conventional diagnostic methods. Biochemical and molecular characterization of isolates from SAG responsive and unresponsive Kala-azar patients from different parts of Bihar are being continued to study the strain variations of *Leishmania donovani*.

Comparative efficacy of DDT and malathion for vector control in selected endemic villages of Bihar were undertaken. *P. argentipes* was prevalent in both endemic and non-endemic districts. Insecticide susceptibility test in district Vaishali demonstrated presence of DDT resistant foci.

A study on role of Grass-root Level PHC’s functionaries was initiated with objectives to assess the functioning of health care services in Kala-azar endemic regions and identifying limitations, if any.
The constant guidance and support received from Prof. N.K. Ganguly, Director-General, ICMR and other officials of ICMR, New Delhi is gratefully acknowledged. The sincere and dedicated works of all scientific, technical and administrative staff deserve my special appreciation.

S.K. Bhattacharya
Director
Index

Particulars	**Page No.**

I. Projects Undertaken

1. Hospital based surveillance for Kala-azar.

2. Phase IV trial of Miltefosine in the treatment of Visceral leishmaniasis
 (ICMR/WHO/TDR/Zentaris sponsored).

3. Immuno-phenotyping of cellular infiltrates in dermal tissue and peripheral blood from PKDL cases.

5. Role of CD2 Antigen in T-cell signal Transduction pathway in Visceral Leishmaniasis.

6. In Vitro, Role of *Leishmania* isolates of Responsive and Unresponsive patients in IFN-y & IL-4 production by similar sets of T-cells.

7. Bacterial Infections in visceral leishmaniasis.

8. PCR based diagnosis of Visceral Leishmaniasis from suspected cases of Kala-azar in Bihar

9. Biochemical and molecular characterization of SAG responsive and unresponsive Kala-azar isolates of Bihar

10. Removal of bacterial and yeast contamination from *Leishmania* promastigotes culture by Agar plating. (Adhoc Project)
11. Identification and characterization of *Leishmania donovani* (Promastigote) antigen of naturally and artificially infected *Phlebotomus argentipes*.

12. Evaluation of the impact of DDT and Malathion indoor residual spraying being used in Kala-azar control programme on the disease prevalence (ICMR task force project).

15. Study of grass root level functionaries of kala-azar in Bihar

16. Risk factors for Indian Kala-azar in endemic areas of Bihar.

17. Estimation of epidemiological inputs for computation of burden of visceral leishmaniasis.

18. Hospital based Sero-sentinel surveillance for HIV, HBV & HCV infection among STD & ANC in Bihar (India)

II. Seminars/Symposia/ Meetings

III. Publications

IV. Institutional Committees

 Scientific Advisory Committee

 Ethical Committee

V. Distinguished Visitors

VI. Workshops/Seminars/Conferences/Meetings

VII. List of Staff
1. **Hospital based surveillance for Kala-azar.**

Hospital based surveillance of Kala-azar has been carried out since 2001 for establishing a Kala-azar monitoring and research support database at the RMRI hospital in relation to clinical, epidemiological and socio-economic characteristics. A total of 427 parasitologically confirmed VL patients were admitted during January 2001 to December 2002. The age-distribution of Kala-azar patients is presented (Fig.-I). Male: Female ratio was 1.9:1. Most of the VL cases (89%) came from the rural areas of nearby endemic districts. Newly diagnosed or fresh VL cases were nearly 90%. About 36% patients had per-capita income of Rs. 4000 per month.

Distribution of type of houses is presented (Fig.-II). Most of the patients (64%) were illiterate. Domestic animals like cow, ox, buffalo, goat etc. were found in more than 69% houses, which were surrounded by dense vegetations like banana, bamboo, small creepers and seasonal crops. More than fifty percent of houses were made of mud or brick plastered with mud.
Clinical and laboratory characteristics were compared between two groups of VL patients i.e. <12 years and >12 years of age groups. High Grade fever (>104 degree F) with chill and rigour was recorded in 65% of cases in both groups. There was splenomegaly and hepatomegaly in 89% and 82% of cases in age group <12 years and 83% and 73% of cases in age group >12 years respectively. Leucopenia was recorded in 52% cases and anaemia (Hb<10gm%) in 96% cases. Platelet count was below normal range in 70% of VL cases in age-group >12 years as compared to 37% in <12 years age. SGPT and SGOT were within normal value in 80% cases respectively. Na⁺ and K⁺ level was below normal in 20% and 26% cases respectively.

Cure rate of various drug regimens at the end of treatment showed that number of cases admitted were either resistant to SAG and pentamidine or both (Fig.-III). These cases were
treated with Amphotericin B, success in 93% of the cases at the end of treatment and 100% of the cases responded to Amphotericin B Lipid Complex (ABLC).

Fig.-III: Cure Rate of various drug regimens

A WHO/TDR/Zentaris sponsored Phase IV clinical trial of orally administered Miltefosine was started in 13 clinical centres spread over 6 VL endemic districts in Bihar with objectives to evaluate the use of Miltefosine in patients with confirmed VL in recommended doses in an outpatients setting with facilities for admission, if necessary and to examine whether the high efficacy and low toxicity seen in hospitalised patients can be replicated in an outpatient setting. After completion of all the preliminary formalities, the patient recruitment started from January 2003. A total of 701 clinically and parasitologically confirmed VL cases have been recruited in 13 clinical centers till March 2003. The study is being continued.

3. Immuno-phenotyping of cellular infiltrates in dermal tissue and peripheral blood from PKDL cases.

The objectives of the study were to examine the distribution of different sub-population of T-lymphocytes in dermal lesions and peripheral blood of PKDL patients by using phenotype markers for CD4+ and CD8+ T-cells and to correlate the distribution of T-cell subpopulation in different PKDL lesions with their cytological changes and treatment response.
Fifteen PKDL cases aged between 12 to 57 years were recruited for this study. Clinical information regarding past and present history of Kala-azar, duration, type, sites and size of skin lesions and other relevant information were recorded. Diagnosis was confirmed by demonstration of leishmania parasite in the imprint smear of skin biopsy of PKDL cases. Further immuno-histochemical staining was done by indirect APAAP method for identification of T-cell subpopulation of CD4 & CD8 surface phenotypes.

Samples of peripheral blood of 15 PKDL cases (Before treatment – 15; After treatment – 6), 5 fresh kala-azar cases and 5 healthy individuals, used as control, were collected in EDTA. DAT was used for determination of Antibody titre for leishmania. Ficoll Hypaque density gradient centrifugation method was used for isolation of mononuclear cells from the blood. Flowcytometry was used for counting of T-cells subpopulation in blood.

Lymphocytes circulating in peripheral blood reflected that the absolute number of circulating CD4+ and CD8+ T-cell subpopulation and surface expression during active infection in PKDL cases were reduced (mean value 631/µl and 401/µl respectively) as compared to those of healthy controls (mean value 1064/µl and 699/µl). However, levels of CD4+ and CD8+ cell surface expression were much lower in active kala-azar cases than the PKDL cases. CD4+ T-cell increased up to mean 1126/µl following treatment. On the other hand CD8+ T-cell did not differ much in PKDL patient.

<table>
<thead>
<tr>
<th>Cases</th>
<th>No.</th>
<th>CD4+ / µl</th>
<th>CD8+ / µl</th>
<th>CD4 : CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active PKDL cases</td>
<td>15</td>
<td>631</td>
<td>401</td>
<td>1.57 : 1</td>
</tr>
<tr>
<td>Active KA cases</td>
<td>5</td>
<td>408</td>
<td>218</td>
<td>1.87 : 1</td>
</tr>
<tr>
<td>Healthy contacts</td>
<td>5</td>
<td>1064</td>
<td>699</td>
<td>1.60 : 1</td>
</tr>
</tbody>
</table>

4. **Reactive nitrogen and oxygen intermediate metabolism in patients with visceral leishmaniasis.**

The objectives were to evaluate the parameters associated with oxygen intermediate metabolism in order to know the effector mechanism of macrophages in VL patients and to study the molecular mechanism of oxygen intermediate mediated pathogenesis that may help administering suitable antioxidant therapy in VL patients.
The non-enzymatic proteinaceous antioxidants, non-enzymatic small molecular antioxidants were studied in 30 patients suffering from VL both before and after treatment. Plasma albumin, iron, glucose, uric acid, bilirubin were investigated both before and after successful chemotherapy.

Table: Levels of plasma albumin, uric acid, iron, glucose, and bilirubin in control subjects and kala-azar patients in ranges

<table>
<thead>
<tr>
<th>Groups</th>
<th>Before Treatment</th>
<th>After Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin (g/dl)</td>
<td>2.97±0.53</td>
<td>3.64±0.42</td>
</tr>
<tr>
<td>Uric acid (mg/dl)</td>
<td>2.12±0.26</td>
<td>3.63±0.25</td>
</tr>
<tr>
<td>Iron (µg/ml)</td>
<td>40.40±9.62</td>
<td>73.95±11.28</td>
</tr>
<tr>
<td>Glucose® (mg/dl)</td>
<td>81.06±14.91</td>
<td>92.43±12.38</td>
</tr>
<tr>
<td>Bilirubin (mg/dl)</td>
<td>0.51±0.31</td>
<td>0.25±0.18</td>
</tr>
</tbody>
</table>

The low value of albumin observed in subjects before-treatment showed the possible defect in the metal binding capacity, however, there was an increase in the albumin value after the successful treatment. The observed low value of uric acid in subjects before-treatment might be due to the defective chelating of metal ions. The other non-enzymatic antioxidants and non-enzymatic small molecular antioxidants, i.e., glucose, bilirubin, uric acid, albumin and iron showed low value in subjects before-treatment and increased after the successful treatment indicating that pro-oxidant mechanism within the body were more active at the time of infection than the antioxidant mechanism (Oxidative stress) and this contributed to the pathogenesis of the disease

5. Role of CD2 Antigen in T-cell signal Transduction pathway in Visceral Leishmaniasis.

The objectives were to understand the CD2 pathway of T-cell activation and to find out the possible means for modulation of this pathway as a mechanism to ensure protective cytokines (Th1) in patients with Visceral Leishmaniasis.

Seventeen (17) subjects were included in study and clinically classified as asymptomatic early (n=7), symptomatic fresh VL (n=10), cured VL (n=10) and control (n=10). CD2+T lymphocytes was estimated by enumerating in PBML using FACS-Calibur (BD) for cell surface antigens and their relation with IFN-γ (Th1) & IL-4 (Th2) activity in conditioned
medium of PBMNC unstimulated or anti-CD2 stimulated antibody. To define mechanism of CD2 dependant T-cell activation, Protein Kinase-C activation was assayed following culture of 20x10^6 T-cells/ml in conditioned medium in presence of anti-CD Ab and their relation with changes in Th1 & Th2 profile was also determined.

The kinetics of CD2 expression of T-cells prior to infection (healthy) was 1981µl that sequentially declined during early infection (898µl)& further reduced to 437.75µl when infection attained peak level. IFN-γ & IL-4 were reciprocally produced during the extremes of Leishmaniasis. A direct relation of CD2 deficiency & Th1 (IFN-γ) dysfunction was shown. Distinct relation of CD2 deficiency with signaling pathway that might lead to PKC activation during antigen mediated T-cell activation was shown during extremes of disease (% CD4+ cell positive for PKC activity = 5.08%). Exogenous CD2 exposure to T-cell however showed the ability of CD2 to manipulate the PKC signals (13.07%) that enabled CD4+ T-cells to switch over to Th1 effector pathway (IFN-γ: 90.96pg/1 x 10^6 cells, unstimulated: 42.53pg).
6. **In Vitro, Role of *Leishmania* isolates of Responsive and Unresponsive patients in IFN-γ & IL-4 production by similar sets of T-cells.**

The objectives were to evaluate the protective cytokine (IFN-γ) and the disease promoter cytokine (IL-4) production by Flow Cytometry method when similar sets of T-cells stimulated *in vitro* by *Leishmania* isolates of responsive and unresponsive patients of Sodium Antimony Gluconate as well as to find out the statistical significance of cytokines production between isolates (responsive and unresponsive) treated samples of mononuclear cells.

The consecutive patients of febrile spleno-hepatomegaly coming for treatment in RMRIMS from endemic area of Kala-azar had been investigated for confirmation of Kala-azar by demonstration of *Leishmania donovani* bodies in Giemsa stained smear of bone-marrow / spleen. Only Parasitologically confirmed cases were considered for inclusion in the study.

For isolation of parasites and their subsequent adaptation, the bone-marrow / spleen aspirates from Kala-azar confirmed patients had been collected in modified NNN medium with 30% pooled rabbit blood, Schneider’s and Grace’s insect tissue culture media with 20% Fetal Calf Serum (FCS) and had been incubated at 24±1°C in BOD. The adapted parasites had been used in experiments, as stimulant.

The heparinized peripheral blood samples for study were collected from patients and healthy controls after taking informed consent. The samples were coded for double blind study. The peripheral blood mononuclear cells (PBMCs) were separated from blood samples. The lymphocytes were stimulated by *Leishmania* isolates with adjuvant PHA (phyto-haemagglutination) and Golgi stop. The lymphocyte cell surface was stained with Phycoerythrine (PE) labeled anti-human CD4 monoclonal antibody (BD Pharmingen) and fixed by cytofix / cytoperm solution. The cells were permeabilized by perm / wash solution (BD Pharmingen). The cells accumulated cytokines (IL-4 & IFN-γ) were stained by Allophycocyanin (APC) labeled anti-human IL-4 monoclonal antibody (BD Pharmingen) and Fluorescein Isothiocyanate (FITC) labeled anti-human IFN-γ monoclonal antibody (BD Pharmingen) respectively.

The cells were acquired by Flow Cytometer (BD FACs Caliber™ Becton Dickinson, San Jose, CA, USA) and the results were analyzed for standardization of technique using BD cell quest pro™ software (Becton Dickinson).
7. **Bacterial Infections in visceral leishmaniasis.**

This study was initiated with an objective to find out the incidence of bacterial infections associated with VL. Out of 50 Kala-azar patients studied, 16 patients had complaints of burning during micturition, of which 7 were found positive for *E.coli* infection by urine culture. Eight (8) patients, who had cough and productive sputum along with suspect X-ray chest P.A. view, underwent blood PCR for Koch’s. Seven patients were found PCR positive. All these eight patients were examined for sputum for acid-fast bacilli. Five, out of eight patients, were tested positive for acid-fast bacilli (Ziehl Neelsen’s staining).

8. **PCR based diagnosis of Visceral Leishmaniasis from suspected cases of Kala-azar in Bihar**

The objectives were to develop a new Gene target (Non Transcribed Spacer region of rRNA gene) for the diagnosis of visceral leishmaniasis and to compare PCR results of aspirates and blood with the results of conventional diagnostic methods using aspirates. A sample of 113 clinical aspirates (90 Splenic & 23 Bone marrow) were collected in 1.5 ml. eppendorf tube containing T.E. buffer from suspected cases of Kala-azar in the ward / O.P.D. Peripheral blood samples (5 ml) were also collected from same 88-patients during night (9 P.M. approx.) in EDTA vial.

Smear of the aspirates was examined after Giemsa staining for the presence of amastigotes. After inoculation of aspirates in biphasic culture medium (BHI agar medium having 30% defibrinated pooled rabbit blood and Locke’s solution with peptone & glucose as overlay), aspirates were incubated at 25°C. The wet smear of cultures were examined microscopically for the presence of promastigotes at the interval of 2-3 days up to at least 4 weeks before considering the samples as negative.

DNA from all aspirates was isolated by physio-chemical method with the treatment of proteinase K, 10% SDS, incubated at 65°C for 1 hour. DNA of all blood samples was isolated by commercially available Qiagen kit. In every batch of samples, positive and negative controls were randomly included for checking contamination and inhibition.
Amplification reaction was performed in volumes of 50 µl containing 10mM Tris-HCl (pH 8.3), 50mM KCl, 1.5mM MgCl₂, 0.2mM of each dNTPs, 0.6 µM of each primers and 1.5 units of Taq polymerase and 5 µl DNA sample. Each reaction mixture, overlaid with 2 drops of mineral oil to prevent evaporation and amplification, was performed in thermal cycler as initial denaturation at 94°C for 2 min., followed by 35 cycles consisting of denaturation at 94°C for 1 min., annealing at 48°C for 1 min., and extension at 72°C for 2 min.; this was followed by a final extension cycle at 72°C for 5 min.

Amplify products (Amplicons) were subjected to electrophoresis in 1% agarose containing ethidium bromide (0.5µg/ml) at 50 volts in 1 TBE buffer (89mM Tris-borate, 02mM EDTA, pH – 8.0) for 2 hours and bands were visualized under ultra violet light. The techniques have been standardized on clinical samples. The results of the experiment will be evaluated after some modification in primer design for meaningful conclusions, which may help in diagnosis of visceral leishmaniasis.

9. Biochemical and molecular characterization of SAG responsive and unresponsive Kala-azar isolates of Bihar

The objective was to observe the variation in SAG responsive & unresponsive isolates of Kala–azar cases of Bihar using biochemical & molecular methods. After primary isolation & culture adaptation, mass culture of different isolates was done in monophasic media. After microscopic examination, promastigotes of log phase were harvested and washed three times with sterile normal saline at 3000 rpm for 20 min to get sufficient amount of pure culture.

For isolation of DNA, the parasites were suspended in TE buffer. DNA was isolated by physio-chemical method i.e. using proteinase K treatment, 10% SDS, N-Cetyl N,N,N, trimethyl ammonium bromide (CTAB / NaCl), 5M NaCl, deproteinization by equal volume of chloroform : isoamyle alcohol (24:1, v / v). Precipitation of DNA with 0.6 vol. of isopropanol, air-drying, resuspension in T.E. buffer (10mM Tris, 01mM EDTA, pH-8.0), and storage at -20°C was done for further use. NTS region of the rRNA gene was amplified from all the isolates. The PCR products (amplicons) were digested using Restriction Enzymes Hha I, Hae III, Hinf I. Electrophoresis was done in 1% agarose at 25 volts in 1xTBE buffer (89mM Tris-borate, 02mM EDTA, pH – 8.0) for 5hours. After staining for 15 min.in ethidium bromide (0.5µg / ml), bands were observed under UV light.
Some variations were observed in few isolates by RFLP with the Restriction Enzymes \textit{Hha I, Hae III, Hinf I}. But these observations need further repetition of whole procedure and confirmation. Some other restriction enzymes are under trial.

For SDS-PAGE the parasites were suspended in PBS, pH 7.2. Then promastigotes were lysed by freezing thawing using liquid Nitrogen and 37°C for 4–5 times. This suspension was centrifuged at 8,000 rpm for 40 min at 4°C. The supernatant was distributed in small aliquots and stored at –70°C till use. Electrophoresis was done in 12.5% gel at 60/120 volts. Gel was stained with Coomassie brilliant blue solution for over night. After destaining, polypeptide pattern of Leishmania strain was observed and the molecular weight was calculated with the marker. SDS – PAGE of different isolates are being done again, although no clear cut marked differences in their protein profile was observed.

10. Removal of bacterial and yeast contamination from \textit{Leishmania} promastigotes culture by Agar plating (Adhoc Project).

The laboratories working in leishmaniasis frequently face the problem of contamination of Leishmania promastigotes culture by various bacteria and yeasts. Removal of such contamination is of prime importance for maintaining pure culture. The existing remedy is the use of various antimicrobials, though it is much preferred to avoid because antimicrobials might exert selective pressure on sensitive promastigotes that possibly leads to primary cloning. Beyond certain concentration, antimicrobials are inhibitory to the parasite itself and some of them have strong antileishmanial effects. Initially effective concentration of antimicrobials later become ineffective due to increasing antimicrobial resistance both in bacteria and yeast. Antifungal agents like 5-Flurocytocine create mutation. Most of the antimicrobials being used are very expensive (5-Flurocytocine, Gresiofulvin) and hence unaffordable for many laboratories of the developing countries. Continuous sub-passaging of culture with antimicrobials is required for the complete removal of contamination – which is very laborious and time-consuming task, so the present study is focused on a method, based on the capacity of leishmania to multiply and to form macroscopic colonies on agar-based media. This method overcomes all the drawbacks of classical methods and moreover it is easy to perform, economical and at a single attempt, both bacterial and yeast contaminants can be removed without any adverse effect on promastigotes and without using any antibiotics.

In this new method, semi solid agar based medium was successfully used to separate promastigotes physically from their contaminants to get individual isolated colonies. The agar containing solid media provides a firm surface on which individual cells or colony forming
unit (CFU) can form discrete colonies and are advantageous for isolating a particular type of microbe from contaminants. Quadrant streaking of small amount of culture on semi solid media by inoculation loop, gradually thin out the sample and separate the cells spatially from each other. Though attempts were previously made to culture the *L. donovani* promastigotes in semi solid medium with different media, no one has reported the possibility of removing contamination by simple quadrant streaking. Several methods are being practiced for the removal of contamination from *L. donovani* culture and in similar protozoan but none of them is completely reliable and free from the risk of cell loss. This reported approach reduces the cumbersome culture of leishmaniasis, especially in the removal of contamination and having several advantages over the existing methods. This method is simple and easy to perform, inexpensive, free from the risk of lethal effects of antifungal agents and also rapid (within 6 hrs.) in removing contamination.

Pointed arrows in the plate show the *Leishmania donovani* promastigotes colonies in contrast with contaminant bacteria
Table: Recovery of parasites at different time interval, in different overlay and percentage of agar interface.

<table>
<thead>
<tr>
<th>Overlay on agar interface</th>
<th>Incubation Time (hrs)</th>
<th>Interface agar conc (%)</th>
<th>Microscopic observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locke’s solution (kept on blood agar medium for 24 hrs)</td>
<td>16</td>
<td>1</td>
<td>Pure parasites</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1</td>
<td>With contamination</td>
</tr>
<tr>
<td>Locke’s solution</td>
<td>16</td>
<td>1</td>
<td>Pure parasites</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1</td>
<td>With contamination</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.5</td>
<td>A few parasites</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.5</td>
<td>With contamination</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.8</td>
<td>With contamination</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>Pure parasites</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>No parasites</td>
</tr>
<tr>
<td>HBBS</td>
<td>16</td>
<td>1</td>
<td>Pure parasites</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1</td>
<td>With contamination</td>
</tr>
</tbody>
</table>

11. Identification and characterization of *Leishmania donovani* (Promastigote) antigen of naturally and artificially infected *Phlebotomus argentipes*.

The objectives were the demonstration of parasite in guts of *P. argentipes*, comparison of its infectivity status with microscopic examination and immuno dot-Blot, and determination of peptide responsible for the infection in *P. argentipes* by observing their immuno reactivity against kala-azar.

Dot-ELISA

Lysates of individual *P. argentipes*, collected from the endemic areas, were prepared in PBS. Small piece of NCP were kept in the 48 well of tissue culture plate. The method described by Kaushal *et al.* 1998 was applied for the immuno dot enzyme assay. Monoclonal antibody raised against *L. donovani* was used as primary antibody and HRPO as secondary antibody. Male *P. argentipes* were used as negative controls and reference strain (DD8) was used as positive control. After the addition of substrate, color development was observed for 15-30 minutes. Those who developed colors were considered positive.

Fourteen, out of 435, *P. argentipes* (3.22%) were found to be positive. *P. argentipes* (105) were dissected but except some bacterial infection, no flagellate infection was seen. Biuret method was used for determination of protein concentration in collected sand flies. The protein content ranged between 2200 ng/µl to 2500 ng/µl.
Figure 1. End point determination of dot-immunoblot assay. Different concentrations of *L. donovani* promastigote protein (1 µg to 1.5 ng) in 2 fold (half) dilutions were reacted with 1:1000 dilution of monoclonal antibody. Wells 1-10 are; 1 (1 µg), 2 (500ng), 3 (250ng), 4 (125ng), 5 (62.5ng), 6 (31.25ng), 7 (15.62ng), 8 (7.81ng), 9 (3.9ng) and 10 (1.5ng). Wells, +ve and –ve represent positive and negative controls respectively.

Figure 2. Specificity analysis of dot immunoblot. Lane A and B are the antigens collected from male *P. argentipes*. Lane C contains antigens of other sandfly species (lane C well, 1&2), *M. leprae* (lane C well 3&4), *M. tuberculosis* (lane C well 5&6), *P. falciparum* (lane D, well 1&2), *E. histolytica* (lane D, well 3&4), *G.labmlia* (lane D, well 5&6). Lane E and F are laboratory infected female *P. argentipes*. Signs +ve and –ve are positive and negative controls.
Figure 3. Evaluation of dot-immunoblot assay in detection of *L. donovani* infected *P. argentipes* in Kala-azar endemic districts of Bihar, India. Out of 435 female sandflies collected from two districts, 14 showed positive reaction, however, none of the 93 males were found positive.

Antigen study

Making a pool of Ten *P. argentipes* collected from the endemic areas of North Bihar, antigen study was performed. *P. argentipes* were washed thrice with cold phosphate buffered saline. After washing, a sample of 10-15 sand flies was kept in 80 µl of PBS. Sand flies were crushed by sterile wooden sticks in 200ul eppendorf tubes. The tubes were centrifuged at 10,000 g for 10 min. and the resultant protein content of sandfly lysates was diluted in the sample buffer (1:1), boiled for 2 min. and electrophoresed in the discontinuous SDS-PAGE to identify immunogenic protein.

The leishmania antigen derived from serum culture promastigotes and the reference strain DD8 were used as positive control. Lysates of male sandfly were used as negative control. The relative molecular weight of sandfly protein fraction was determined. The protein profile obtained from SDS- PAGE showed several major proteins. Direct comparisons of the protein fractions of sandfly and leishmania antigen were done to identify the immunogenic antigen in the sandfly gut. Total number of 35 pools, approximately (10 flies in one pool), homogenized lysates of 350 sandflies were analyzed so for by SDS-PAGE.

12. Evaluation of the impact of DDT and Malathion indoor residual spraying being used in Kala-azar control programme on the disease prevalence (ICMR task force project).
The aim of this study was to evaluate the efficacy of DDT indoor residual spraying in Kala-azar control. The different specific objectives were

1. To assess the susceptibility status of vectors to DDT and Malathion.
2. To study the impact of spraying on abundance and survival of the vector(s) population.
3. To determined the residual effect of the insecticide sprayed and

No spraying was conducted in the study area in the year 2002 and 2003. Man-hour density, abdominal stages and parity state were studied and compared with post spray period (conducted previous year). Data collected round the year on man-hour density, abdominal stages and parity status of *P. argentipes* are presented in Figure IV, V & VI.
Man-Hour Density (MHD), abdominal stages and parity status of *P. argentipes* were studied in Bochaha PHC, Muzaffarpur district and Patepur PHC, Vaishali district from January to December, 2003. *P. argentipes* population had normal pattern in the absence of any insecticide (Figure 1) and MHD was quite high ranging in between 13.01 to 19.2 from March to November respectively. Similarly, percentage of gravid fly was also high (25.9%) in comparison to post spray (5.8%). Only, 11.7% parous fly was recorded during post spray
where as it was 35% after one year of spray. This study clearly indicates that though *P. argentipes* has developed tolerance against DDT but still it is effective for containing sandfly density. It is understood that any insecticide, if used for a long period, would precipitate resistance in target species. Hence, as a policy, the insecticide in practice should be discontinued (insecticide holiday) or used rationally as per the need.

13. **Control of Indian kala-azar vector, *Phlebotomus argentipes***.

This study was undertaken with objectives to isolate symbiotic bacterial flora of *P. argentipes* from different geographic regions of India and to develop a shuttle plasmid and transformation system for genetic modification of sandfly symbionts to be used in field condition.

Sand flies were collected from different endemic villages of Kala-azar viz. Wajitpur Majhauki of Muzaffarpur district, Majlishpur of Vaishali district and Mohanpur of Samastipur district in Bihar. The wild sand flies were dissected under sterilized condition. The head, wings and legs were removed. The alimentary canal was pulled out. The foregut and mid gut were removed and kept in normal saline. Motility of the bacteria was observed in mid gut under microscope. The pool of guts was homogenized and kept inside sterile vial. The primary isolation of bacterial contents was done by spread plate method in Trypicase Soya agar (TSA) medium and pure culture of bacteria was done by streak plate method on Nutrient Agar (NA). Morphologically different colonies were found appearing after 24 hours. Twenty different types of colonies were found morphologically arising. Each colony was grown separately and preserved in deep freezer for further characterization.

Bacterial colonies from the gut of sandflies

With increasing accessibility to new technologies viz. remote sensing, it has become possible to monitor land-use features on Earth's surface over various time interval to develop methods for rapid stratification of high susceptible areas and for the design of remedial measures. This study was taken up in collaboration with MRC, New Delhi, RRSSC, Kharagpur (ISRO) with the objectives as follows:

i. To find out the association of vegetation, soil and sub-soil water in different environmental conditions with sandfly distribution in endemic and non-endemic foci of Kala-azar.

ii. To map geographical distribution of vector in relation to VL using Remote Sensing and GIS technology and thus to define macro-ecosystem of sand fly and VL.

iii. To monitor effect of specific vegetation cover, water bodies, human settlements and other land use features through conventional ground surveys as well as satellites on vector abundance in endemic and non-endemic foci to evaluate its role as an “Epidemic predictor”.

Earlier vector density was evaluated in both endemic (Patepur block, Vaishali district) and non-endemic (Lohardagga block, Lohardagga district) for each season for two consecutive years. Associations of eco-environmental factors were also looked for comparative study of vector density in both study areas. Ground and satellite data were gathered to locate landscape elements and probable sandfly breeding sites. Ground survey map of the almost all the selected villages under Patepur PHC of Vaishali district as endemic foci and Lohardagga Block of Lohardagga district as non-endemic foci has been completed. There are 18 villages in Patepur PHC and 12 villages in Lohardagga PHC. The respective FCC map and Land-use map have been generated by RRSSC, Kharagpur.

The collected land use data and FCC, prepared by RRSSC, Khargapur, were compared to find out the correlation of geographical distribution of vector and disease distribution in periodic fashion. The analysis of the facts and findings of this project is underway.
15. **Study of grass root level functionaries of kala-azar in Bihar**

The objectives were to study the existing pattern of functioning of health care services in terms of organization and implementation of facilities for diagnosis and treatment of Kala-azar at primary health centers (PHCs) and to identify shortfalls, if any, in above areas that requires strengthening.

Three PHC's each in three highly endemic districts were selected randomly for this study. Till date, 225 health personnel including Medical officers and para-medical staffs of nine PHC's were interviewed through semi-structured questionnaire. Among the respondents, female (81%) were significantly higher as compare to male (19%) and nearly 88% had rural backgrounds. The respondents had educational level of matriculation (60%), intermediate (30%) and graduation (10%). Only 17% had undergone some or the other training. The responses regarding symptoms were fever of long duration with cold (99%), weakness (63%), loss of appetite (63%) enlargement of spleen (45%) and blackening of skin (7%). The respondents were involved with activities related to kala-azar such as DDT spray (90%), case identification (82%), report for treatment at PHC (62%), suggestions for investigation (52%) and awareness activities (66%). The problems encountered by the health workers during their work were lack of diagnostic facilities (99%), lack of availability of medicine (99%), and lack of co-operation by PHC (51%). The other difficulties as told by them were sub-center running in rented building (61%), Sub-canter’s condition poor/very poor (70%) and meeting of staff for Kala-azar (22%). The other problems were non-availability of audiovisual facilities (98%) and lack of IEC activities by district team. Nearly 99% respondents felt that audiovisual facilities were not required. Fieldwork for data collection is in progress.

16. **Risk factors for Indian Kala-azar in endemic areas of Bihar.**

There is not much quantitative information about the influence of socio-economic factors on Kala-azar in endemic areas of Bihar and whether these factors influence the occurrence of severe and complicated disease. The possible role of socio-economic variables has received little attention. Therefore, a study has been taken up to investigate whether socio-economic factors are important risk factors for kala-azar and, if so, identify those related to causation of disease, using the case-control approach.

An unmatched case-control design has been used for this study. A pilot study was conducted taking 60 kala-azar cases admitted in the ward during Jan-March2002 and 182 healthy controls from the endemic regions belonging to 60 VL patients. The potential socio-
economic factors for VL are investigated with the aid of a structured questionnaire by investigators to the patients and controls. In case of children, the attendants were interviewed. Univariate-analysis was done to estimate odd ratio of all the factors and its significance using Mantel-Haenszel Chi-square, Yates-Corrected Chi-square, Fishers Exact Test. Out of 25 factors studied, seven factors were found significantly associated with disease. On the basis of significant factors, a sample of 134 VL cases and 406 healthy controls was estimated. The study is in progress.

17. Estimation of epidemiological inputs for computation of burden of visceral leishmaniasis.

This study was undertaken to estimate DALY’s (Disability Adjusted Life Years) for visceral leishmaniasis in India.

Estimation of under-reporting: It is reported that the VL cases treated at PHCs during 1987-1991 was 57.4%(50.2 to 66.9 % CI) of the estimated cases and nearly 57% cases were treated by the private doctors (Bora et al 1995). An unpublished data of survey, conducted by the Institute in 10 villages of Muzaffarpur district in 21,000 populations during 2000-2001 for site preparation of vaccine trial (WHO collaborative study), reported that nearly Private Doctors treated 60% of VL cases. Taking these facts into consideration, the total number of estimated cases would be 2 to 2.5 times more than that of the actual cases reported in Bihar. In the year 2002, total incidence and deaths due to VL were 9510 and 148 respectively. If it were assumed that the extent of under-reporting of cases is constant over period of time and population sub-groups, which is very unlikely, then the estimated cases and deaths would be in the range of 19020-23775 and 296-370 respectively.

Estimation of incidence and deaths by age and sex: For the year 2002, a sample of 1165 VL cases reported in 25 PHCs and admitted at RMRI ward were collected and incidence by age and sex compiled (Table-2). Using the proportion of new cases in each age group and sex in the sample, age-sex wise distribution of total VL cases reported during 2002 in Bihar was estimated (Table-3). Average duration of illness and age at onset were estimated. Similarly, a sample of 30 deaths due to VL was collected from respective PHCs and proportion of deaths due to VL by age group and sex was used for estimating age-sex wise distribution of deaths due to VL (Table-4).
YLD and YLL of VL by age and sex were computed using the population of endemic districts by age and sex in Bihar using projected population figure using Census 2001 as baseline. The incidence by age and sex is also indicated and the pattern is very consistent as observed in the community. Finally, Disability-adjusted life years (DALYs) for VL in Bihar were estimated for 2002. (Table-5). The YLL component is significantly higher and goes down as the age advances.

Table-1: Age-sex wise distribution of population at risk of Kala-azar in endemic districts of Bihar-2002

<table>
<thead>
<tr>
<th>Age</th>
<th>MALE</th>
<th>FEMALE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>4409763</td>
<td>4159127</td>
<td>8568889</td>
</tr>
<tr>
<td>5-14</td>
<td>9311001</td>
<td>8838144</td>
<td>18149145</td>
</tr>
<tr>
<td>15-29</td>
<td>9675383</td>
<td>8436597</td>
<td>18111979</td>
</tr>
<tr>
<td>30-44</td>
<td>6262769</td>
<td>6311201</td>
<td>12573970</td>
</tr>
<tr>
<td>45-59</td>
<td>4120420</td>
<td>3540730</td>
<td>7661151</td>
</tr>
<tr>
<td>60+</td>
<td>2216036</td>
<td>1940698</td>
<td>4156734</td>
</tr>
<tr>
<td>Total</td>
<td>35995371</td>
<td>33226496</td>
<td>69221867</td>
</tr>
</tbody>
</table>

Table-2: Age-sex distribution of Kala-azar patients in sample collected from PHCs

<table>
<thead>
<tr>
<th>Age</th>
<th>Male</th>
<th>%</th>
<th>Female</th>
<th>%</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>21</td>
<td>2.75</td>
<td>25</td>
<td>6.22</td>
<td>46</td>
<td>3.95</td>
</tr>
<tr>
<td>5-14</td>
<td>312</td>
<td>40.89</td>
<td>171</td>
<td>42.54</td>
<td>483</td>
<td>41.46</td>
</tr>
<tr>
<td>15-29</td>
<td>180</td>
<td>23.59</td>
<td>90</td>
<td>22.39</td>
<td>270</td>
<td>23.18</td>
</tr>
<tr>
<td>30-44</td>
<td>164</td>
<td>21.49</td>
<td>82</td>
<td>20.40</td>
<td>246</td>
<td>21.12</td>
</tr>
<tr>
<td>45-59</td>
<td>71</td>
<td>9.31</td>
<td>28</td>
<td>6.97</td>
<td>99</td>
<td>8.50</td>
</tr>
<tr>
<td>60+</td>
<td>15</td>
<td>1.97</td>
<td>6</td>
<td>1.49</td>
<td>21</td>
<td>1.80</td>
</tr>
<tr>
<td>Total</td>
<td>763</td>
<td>65</td>
<td>402</td>
<td>35</td>
<td>1165</td>
<td></td>
</tr>
</tbody>
</table>

Table-3: Age-sex wise distribution of Estimated Kala-azar cases in Bihar during 2002

<table>
<thead>
<tr>
<th>Age (year)</th>
<th>Male</th>
<th>%</th>
<th>Female</th>
<th>%</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>383</td>
<td>2.75</td>
<td>466</td>
<td>6.22</td>
<td>849</td>
<td>4</td>
</tr>
<tr>
<td>5-14</td>
<td>5688</td>
<td>40.89</td>
<td>3186</td>
<td>42.54</td>
<td>8873</td>
<td>41</td>
</tr>
<tr>
<td>15-29</td>
<td>3281</td>
<td>23.59</td>
<td>1677</td>
<td>22.39</td>
<td>4958</td>
<td>23</td>
</tr>
<tr>
<td>30-44</td>
<td>2990</td>
<td>21.49</td>
<td>1528</td>
<td>20.40</td>
<td>4517</td>
<td>21</td>
</tr>
<tr>
<td>45-59</td>
<td>1294</td>
<td>9.31</td>
<td>522</td>
<td>6.97</td>
<td>1816</td>
<td>8</td>
</tr>
<tr>
<td>60+</td>
<td>273</td>
<td>1.97</td>
<td>112</td>
<td>1.49</td>
<td>385</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>13909</td>
<td>65</td>
<td>7489</td>
<td>35</td>
<td>21398</td>
<td></td>
</tr>
</tbody>
</table>
Table-4: Age-sex wise distribution of Estimated Kala-azar deaths in Bihar during 2002

<table>
<thead>
<tr>
<th>Age (year)</th>
<th>Male %</th>
<th>Female %</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>12</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5-14</td>
<td>57</td>
<td>28</td>
<td>47</td>
</tr>
<tr>
<td>15-29</td>
<td>61</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>30-44</td>
<td>59</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>45-59</td>
<td>14</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>60+</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>205</td>
<td>62</td>
<td>128</td>
</tr>
</tbody>
</table>

Table-5: Disability-adjusted life years (DALY'S, in thousands) of Kala-azar in Bihar – 2002

<table>
<thead>
<tr>
<th></th>
<th>MALES</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YLDs</td>
<td>YLLs</td>
<td>DALYs</td>
<td>YLDs</td>
<td>YLLs</td>
<td>DALYs</td>
<td>YLDs</td>
<td>YLLs</td>
</tr>
<tr>
<td>Age (year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>67</td>
<td>942</td>
<td>1009</td>
<td>82</td>
<td>162</td>
<td>244</td>
<td>149</td>
<td>1104</td>
</tr>
<tr>
<td>5-14</td>
<td>995</td>
<td>4029</td>
<td>5024</td>
<td>558</td>
<td>2335</td>
<td>2893</td>
<td>1553</td>
<td>6364</td>
</tr>
<tr>
<td>15-29</td>
<td>574</td>
<td>3591</td>
<td>4165</td>
<td>293</td>
<td>978</td>
<td>1271</td>
<td>867</td>
<td>4569</td>
</tr>
<tr>
<td>30-44</td>
<td>523</td>
<td>2611</td>
<td>3134</td>
<td>267</td>
<td>511</td>
<td>778</td>
<td>790</td>
<td>3122</td>
</tr>
<tr>
<td>45-59</td>
<td>226</td>
<td>422</td>
<td>648</td>
<td>91</td>
<td>64</td>
<td>155</td>
<td>317</td>
<td>486</td>
</tr>
<tr>
<td>60+</td>
<td>48</td>
<td>29</td>
<td>77</td>
<td>19</td>
<td>16</td>
<td>35</td>
<td>67</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>2433</td>
<td>11624</td>
<td>14057</td>
<td>1310</td>
<td>4066</td>
<td>5376</td>
<td>3743</td>
<td>15690</td>
</tr>
</tbody>
</table>

18. Hospital based Sero-sentinel surveillance for HIV, HBV & HCV infection among STD & ANC in Bihar (India)

This study was carried out as a part of National AIDS Control Strategy under Annual Sentinel Surveillance Programme with main objectives to see the trend of HIV among STD and ANC attendees of hospitals in Bihar over a period of time and in different socio-economic status. A total 4726 sera sample was tested for HIV antibodies and VDRL. The distribution of sera sample and test result is presented below:
<table>
<thead>
<tr>
<th>Type & No. of sites</th>
<th>Sample collected & tested</th>
<th>Positive for HIV-1</th>
<th>Positive for HbB</th>
<th>Positive for HbC</th>
<th>Positive for VDRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD (8)</td>
<td>2000</td>
<td>55 (2.75%)</td>
<td>64 (3.2%)</td>
<td>10 (0.54%)</td>
<td>251 (12.5%)</td>
</tr>
<tr>
<td>ANC(7)</td>
<td>2726</td>
<td>8 (0.29%)</td>
<td>50 (1.8%)</td>
<td>14 (0.54%)</td>
<td>681 (25%)</td>
</tr>
<tr>
<td>Total (15)</td>
<td>4726</td>
<td>63 (1.73%)</td>
<td>114 (2.41%)</td>
<td>24 (0.50%)</td>
<td>932 (19.72%)</td>
</tr>
</tbody>
</table>

19. **Voluntary Counseling and Testing Centre (VCTC - under Bihar State AIDS Control Society).**

A Voluntary Counselling and Testing Centre (VCTC), sponsored by the Bihar State AIDS Control Society, is functioning since 1st April 2001 at this Institute.

A total of 3184 blood samples were collected at VCTC for HIV screening till March 2003. Of these, 637 samples i.e. 20% were positive for HIV. The HIV positivity in females (23.14%) was higher as compared to males (18.76%). The maximum positivity rate was observed in the age-group 31-45 years (29%).

On the basis of occupation, the maximum HIV positivity rate was observed among truck /bus drivers (44%) followed by BMP/Military personnel (30%) and out-migrants labourers working in the metropolitans like Mumbai, Kolkata, Delhi, etc (25%). Among the housewives, 28% HIV positivity was observed, whom husbands were either truck drivers or migrant labourers.
Seminars / Symposia/ Meetings
attended during 2002-2003

Dr. Kamal Kishore, Deputy Director

- ICMR Task Force meeting on “Remote Sensing” held at MRC, Delhi on 17th April 2002.
- ICMR Task Force meeting on DDT/ Malathion” at ICMR Headquarter on 10th July 2002.
- The Tenth International Congress of Parasitology (ICOPA X) held from 4th – 9th August 2002 at Vancouver, Canada.
- ICMR Task Force meeting on Remote Sensing at RRSSC, Kharagpur at IIT Campus on 20th August 2002.
- Administrative Staff Orientation Training Programme, conducted from 09th - 10th Jan. 2003 by Indian Council of Medical Research at RMRIMS, Patna.
- 1st International Seminar of Medical Entomology organized by “The Literature Museum Society and Pathology Department, Gandhi Medical College” held at Bhopal from 19th – 20th Jan 2003.

Dr. P.K.Sinha, A.D.

- ICMR/TDR/WHO sponsored workshop of “Investigators of Phase IV trial of Miltefosine for Treatment of Visceral leishmaniasis” held at RMRIMS, Patna from 26th – 28th May 2002.
- Technical Committee meeting under Directorate of National Anti-Malaria Programme, Govt. of India at New Delhi to discuss issues related to Inj. SSG under Kala-azar Control Programme on 1st July 2002.
- Training on Ethical Issues in Clinical Trials at Thamassat University, Bangkok from 29th July – 2nd August 2002.
- Group discussion with NASTAD (USA) delegates at RMRIMS on 18th Oct. 2002 in context with Voluntary Counseling Centre for HIV and Sentinel Surveillance Centre.
- A project meeting on “Haemoglobinopathies” at Institute of Immunohaematology (IIH), Mumbai on 07th Dec. 2002.
- Administrative Staff Orientation Training Programme, conducted from 09th - 10th Jan. 2003 by Indian Council of Medical Research at RMRIMS, Patna
- Temporary Adviser in “WHO/TDR, PDT meeting on Parmomycin Trial”at Bangkok, Thailand from 17th-18th Feb.2003.
- Meeting and field visits to “Implement Cross-boarder Collaboration Activities for the Prevention and Control of Kala-azar and Malaria”, organized by HMG Ministry of Health, Deptt. of Health Services, Nepal and Dept. of Health, Govt. of Bihar, India held from 22nd – 23rd Feb., 2003.

Mr. N. Kumar, A.D.

- ICMR/TDR/WHO sponsored workshop of investigators of "Phase IV Trial of Miltefosine for Treatment of Visceral Leishmaniasis" held at RMRIMS, Patna from 26th-28th, May 2002.
- Meeting of “Task Force on Socio-behavioral Research on Kala-azar” held in ICMR HQ. On 28th Jan, 2003 and presented the Project "Prevention of Kala-azar through Socio-Behavioral Intervention"

Dr. Neena Verma, S.R.O.

- WHO meeting for “Assessment and follow up of Good Clinical Practice and Laboratories (GLP) in Bihar” from 28th - 29th Sept. 2002 for Phase IV trial of Miltefosine Treatment of VL at RMRI, Patna.
- Annual conference of Association of Physician of India, Bihar chapter BAPICON-2002, held at Rajgir.
• Annual conference of Indian Academy of Clinical Medicine, Bihar chapter held at Patna in June, 2002.

Mr. A.K. Gupta, S.R.O.

• ICMR / WHO / TDR workshop sponsored for the investigators of Phase IV Trial of Miltefosine for the Treatment of Kala-azar from 26th - 28th May, 2002, held at this institute.
• WHO workshop on phase IV trial of Miltefosine on 19th October at RMRI, Patna.
• Delivered a popular lecture entitled “Use of Modern Technology in Diagnosis of VL” in Hindi Seminar at this institute, held on the occasion of National Technology Day on 11th May 2002.

Dr. V. N. R. Das, S.R.O.

• ICMR/TDR/WHO sponsored workshop of Investigators of “Phase IV Trial of Miltefosine for Treatment of Visceral leishmaniasis” held at RMRIMS, Patna from 26th – 28th May, 2002.
• Training on Ethical Issues in Clinical Trials at Thamassat University, Bangkok, Thailand from 29th July – 2nd August 2002.
• Training Programme on Epidemiological Aspects of Diseases held at NICED, Kolkata from 6th – 26th Nov. 2002.
• Meeting and field visits to “Implement Cross-boarder Collaboration Activities for the Prevention and Control of Kala-azar and Malaria”, organized by HMG Ministry of Health, Deptt. of Health Services, Nepal and Dept. of Health, Govt. of Bihar, India held from 22nd – 23rd Feb., 2003.

Dr. K. Pandey, S.R.O.

• Workshop on “Statistical Computing and Clinical Trials” held at IRMS, New-Delhi from 15th – 19th April 2002.
• ICMR/TDR/WHO sponsored workshop of Investigators of “Phase IV Trial of Miltefosine for Treatment of Visceral leishmaniasis” held at RMRIMS, Patna from 26th – 28th May 2002.
• Training on Ethical Issues in Clinical Trials at Thamassat University, Bangkok, Thailand from 29th July – 2nd August 2002.
• Training Programme on Epidemiological Aspects of Diseases held at NICED, Kolkata from 6th – 26th Nov.2002.
• WHO/TDR meeting on “Parmomycin Trial” at Bangkok, Thailand from 17th-18th Feb.2003.
• Meeting and field visits to “Implement Cross-boarder Collaboration Activities for the Prevention and Control of Kala-azar and Malaria”, organized by HMG Ministry of Health, Deptt. of Health Services, Nepal and Dept. of Health, Govt. of Bihar, India held from 22nd – 23rd Feb., 2003.

Dr. S. Bimal, R.O.
• ICGEB Meeting and discussion during Theoretical and Practical Course on Molecular Biology of Leishmania, 3rd – 5th Oct., 2002 at Trieste, Italy.
• ICMR/TDR/WHO sponsored workshop of Investigators of “Phase IV Trial of Miltefosine for Treatment of Visceral leishmaniasis” held at RMRIMS, Patna from 26th – 28th May, 2002.

Dr. C.S.Lal, R.O.
• ICMR/TDR/WHO sponsored workshop of Investigators of “Phase IV Trial of Miltefosine for Treatment of Visceral leishmaniasis” held at RMRIMS, Patna from 26th – 28th May, 2002.
• Advance WHO/TDR Course on Immunology, Vaccinology and Biotechnology applied to Infectious Diseases organized at WHO Immunology Research and Training Centre, Laussane, Switzerland and Annecy, France from 12th Sept. - 25th Oct., 2002.

Dr. V. Kumar, R.O.
• Workshop on “Multicentric Evaluation of a Simple Technique for the Extraction of the DNA from W. bancrofti infected C. quinquefasciatus for PCR assay & rDNA PCR
assay for the identification of *A. fluviatalis*” from 24th - 28th March, 2003 at Vector Control Research Centre, (ICMR), Pondicherry.

Mr. M.Muniraj, R.O.

- ICMR/WHO/TDR sponsored workshop for the investigators of “Phase IV Trial of Miltefosine” for the treatment of visceral leishmaniasis, conducted at RMRIMS, on 26th - 28th May 2002.

Mr. Alok Ranjan, R.O.

- ICMR/WHO/TDR sponsored workshop for the investigators of “Phase IV trial of Miltefosine” for the treatment of visceral leishmaniasis, conducted at RMRIMS, Patna-7 on 26th - 28th May 2002.

Dr. Nawin Kumar, R.O.

- ICMR/WHO/TDR sponsored workshop for the investigators of “Phase IV Trial of Miltefosine” for the treatment of visceral leishmaniasis, conducted at RMRIMS, Patna-7 on 26th - 28th May 2002.

Mr. Dharmendra Singh, R.O.

- Meeting on ICMR funded project on “Genome Project of Leishmaniasis” and participated in discussion on Molecular Biology of Leishmaniasis on 17th Feb. 2002 at I.I.C.B. Kolkata.
• Presented a paper on “Application of ARDRA for Identification and Molecular Epidemiology of Microbes” at the “2nd National Conference of Laboratory Medicine” from 21st – 23rd Feb., 2002 at All India Institute of Medical Sciences, New Delhi.

• International Symposium on “Leishmaniasis” & Workshop on “Molecular Methods in Infectious Disease Diagnosis” at Deptt. of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, from 23rd-24th Feb.2002.

• ICMR/WHO/TDR sponsored workshop for the investigators of “Phase IV Trial of Miltefosine” for the Treatment of Visceral Leishmaniasis, conducted at RMRIMS, Patna, on 26th to 28th May 2002.

Dr. S.Narayan, R.O.

• ICMR/WHO/TDR sponsored workshop for the investigators of “Phase IV Trial of Miltefosine for the Treatment of Visceral Leishmaniasis”, conducted at RMRIMS, Patna-7 on 26th - 28th May 2002.

Dr. D.S.Dinesh, R.O.

• As Temporary Advisor on “Scientific Working Group on Insect Disease Vectors and Human Health” held at WHO, Geneva, Switzerland from 12th –16th August 2002.

• Workshop on “Multicentric Evaluation of a Simple Technique for the Extraction of the DNA from W. bancrofti infected C. quinquefasciatus for PCR assay & rDNA PCR assay for the identification of A. fluviatalis”, from 24th- 28th March, 2003 at Vector Control Research Center, (ICMR), Pondicherry.

Dr. S.K. Kesari, R.O.

Mr. S. K. Singh, Research Assistant

• National Symposium on “Plant Biotechnology: Role of Sustainable Development” and 25th Meeting of Plant Tissue Culture Association (India) from 17th -19th Feb., 2003.
Dr. V. P. Singh, Sr. T. O.
- ICMR/WHO/TDR sponsored workshop for the investigators of “Phase IV trial of Miltefosine” for the treatment of visceral leishmaniasis, conducted at RMRIMS, Patna-7 on 26th to 28th May 2002.

Mrs. M. S. Roy, Technical Assistant
- “Advanced Level Training for Laboratory Technicians” at Institute of Pathology (IOP), ICMR, New Delhi from 24th March – 23rd April 2003.

Mr. S. B. Barman, Technical Assistant
- Training programme on “Haemoglobinopathies” at Institute of Immunohaematology (IIH), Mumbai on 7th Dec., 2002.

Mr. Brij Nath Prasad
PAPERS PUBLISHED

Publication in Proceedings:

Scientific Advisory Committee

Chairman

Dr. C. P. Thakur,
Hon’ble Union Minister of Health & FW
Govt. of India

Members

Prof. R.C. Mahajan
Emeritus Scientist
Dept. of Parasitology
Post Graduate Institute of
Medical Education & Research,
Chandigarh – 160 012.

Prof. V. I. Mathan
Flat 2a, Mayflower
10 Haddows Road, First Street
Nungabakkam
Chennai.

Dr. Sandeep Basu,
Director
National Inst. of Immunology,
New Delhi.

Dr. S.E. Hasnain
Director
Centre for DNA Finger Printing &
Diagnostics (CDFD), Hyderabad.

Dr. Asis Datta,
Director
NCPGR, JNU Campus
New Delhi.

Dr. Samir Bhattacharya,
Director
Indian Institute of Chemical Biology
Raja S.C. Road, Kolkata.

Dr. Shyam Sunder
Professor of Medicine,
Institute of Medical Sciences
Banaras Hindu University
Varanasi – 221 005.

Dr. Y.K. Joshi,
Dept. of Gastroenterology,
AIIMS,
New Delhi.

Dr. (Prof.) Kasturi Datta,
School of Environment of Sciences
Jawaharlal Nehru University
New Delhi.

Dr. P. Das,
Dy. Director, NICED,
National Institute of Cholera &
Enteric Disease,
Beliaghata, Kolkata – 700 010.
Dr. Sowmya Swaminathan
Dy. Director,
Tuberculosis Research Centre,
Chennai.

Dr. Deepali Mukherjee,
DDG (SG)
Indian Council of Medical Research
Ansari Nagar
New Delhi

Member-Secretary
Dr. S.K. Bhattacharya
Director,
Rajendra Memorial Research Institute of Medical Sciences,
Agamkuan, Patna – 800 007.
Ethical Committee

Chairman

Justice Bhubaneshwar Prasad
Fraser Road, Patna.

Members

Dr. Gopal Prasad Sinha
Rtd. Prof. of Medicine, PMCH, Patna

Dr. B.K. Singh,
Rtd. Prof. of Botany, Patna Science College,
Patna University, Patna

Smt. Renuka Sharma
Advocate, Patna High Court, Patna

Dr. D.D. Guru
Rtd. Prof., A.N. Sinha Institute of
Social Sciences, Patna

Dr. M.L. Verma
Principal & Ex. Prof. of Pharmacology,
Patna Medical College, Patna

Member-Secretary

Dr. S. K. Bhattacharya
Director, RMRIMS, Patna
Institutional Committees

Animal Ethical Committee

Dr. Gopal Prasad Sinha (Chairman)
Ex- Head of the Department, Medicine, PMCH, Patna.

Dr. Kamal Kishore
Dy. Director, VBC, RMRI

Dr. Neena Verma
Senior Research Officer, Pathology, RMRI

Dr. Sanjeev Bimal
Research Officer, Immunology, RMRI

Dr. Rajiv Ranjan Pd. Sinha
Bihar Veterinary College, Patna.

Mr. Rajendrapati Tripathi,
Patna University, Patna

Mr. Mangla Pd. Mishra
Ranchi University, Ranchi
Or
(CPCSEA Nominee)

Mr. C.P. Chaudhary
Madhubani. (CPCSEA Nominee)

Dr. P.K. Sinha
Asstt. Director
Cl. Medicine, RMRI (Member-Secretary)
Purchase Committee
Dr. K. Kishore (Chairman)
Dr. P.K.Sinha (Member)
Dr. Krishna Pandey (Member)
Mr. Udai Kumar (Member)
N. Sinha (Member)
Mr. Satyendra Kumar (Member)

Library Committee
Dr. K.Kishore (Chairman)
Dr. P.K.Sinha (Member)
Dr.(Mrs.)N.Verma (Member)
Mr. B.K.Chowdhary (Member-Secretary)
Mr. M.

Building Committee
Dr. S.K.Bhattacharya (Chairman)
Dr. Kamal Kishore (Member)
Dr. P.K.Sinha (Member)
Mr.B.K.P.Thakur (Member)
Mr.M.N.Sinha (Member)
Er. A.S.Singh, Engg.-in-chief, Rtd. (Expert)
Er.K.P.Sinha, Engg.-in-chief(Rtd.)-Expert

Annual Report Compilation Committee
Dr. P.K.Sinha (Chairman)
Dr. C.S.Lal (Member)
Mr. Alok Ranjan (Member)

Condemnation Committee
Mr. N.Kumar (Chairman)
Dr. V.N.R. Das (Member)
Mr. M.N.Sinha (Member)
Dr. D.S.Dinesh (Member)
Mr. Naresh Kumar (Member)

SC/ST & OBC Cell Committee
Mr. A.K.Gupta (Chairman)
Dr. V.N.R.Das (Member)
Mr. Satyendra Kumar (Member)
Mr. S.L.Marandi (Member)
Mr. Narendra Kumar (Liaison Officer)

Canteen Committee
Mrs. Pushpa Raj (Chairman)
Mrs. M. S. Roy (Secretary)
Mrs. Anita Kumari (Member)
Mrs. Saroj Devi (Member)
Mrs. Madhuri Kumari (Member)
Mr. Anil Kumar Prasad (Member)

Tender/Quotation Committee
Mr. A.K.Gupta (Chairman)
Dr. C.S.Lal (Member)
Mr. Naresh Kumar (Member)
Distinguished Visitors

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.05.2002</td>
<td>Dr. T.K.Jha, Kala-azar Research Centre, Muzaffarpur</td>
</tr>
<tr>
<td></td>
<td>Dr. U.C.Samal, Prof. & Head, Cardiology, PMCH, Patna</td>
</tr>
<tr>
<td></td>
<td>Dr. Herbert Sinderman, ASTA Medica, Germany</td>
</tr>
<tr>
<td></td>
<td>Dr. N.K.Pal, CSTM, Kolkata</td>
</tr>
<tr>
<td></td>
<td>Dr. Nitali Pramarie, CSTM, Kolkata</td>
</tr>
<tr>
<td></td>
<td>Dr. Shyam Sundar, IMS, BHU, Varanasi</td>
</tr>
<tr>
<td></td>
<td>Dr. V.Vijayasekaran, WHO Clinical Monitor, Chennai</td>
</tr>
<tr>
<td></td>
<td>Dr. Somboon Keitinun, Thamasat University, Bangkok</td>
</tr>
<tr>
<td></td>
<td>Dr. Juntra Karbwang, Clinical Coordinator, WHO, Geneva</td>
</tr>
<tr>
<td></td>
<td>Dr. R.H.Jani, Director, Med. Affairs & Res., German Remedies, Mumbai</td>
</tr>
<tr>
<td>20.10.2002</td>
<td>Dr. Suman Rijal, B.P.K.I.H.S., Dharan, Nepal</td>
</tr>
<tr>
<td></td>
<td>Dr. R.C.Pandey, Chapra</td>
</tr>
<tr>
<td></td>
<td>Dr. S.Mukherjee, Samastipur</td>
</tr>
<tr>
<td></td>
<td>Dr. M.P.Sharma, Samastipur</td>
</tr>
<tr>
<td></td>
<td>Dr. A.K.Aditya, Samastipur</td>
</tr>
<tr>
<td></td>
<td>Dr. Sandeep Mishra, Darbhanga</td>
</tr>
<tr>
<td></td>
<td>Dr. K.Tiwari, Muzaffarpur</td>
</tr>
<tr>
<td></td>
<td>Dr. D.Nath, Motihari</td>
</tr>
<tr>
<td>25.10.2002</td>
<td>Micheal Macgrath, Inst. for One World Health, San Francisco, USA</td>
</tr>
<tr>
<td></td>
<td>Dr. Arvind Pandey, IRMS (ICMR), New Delhi</td>
</tr>
</tbody>
</table>
26.10.2002 Dr. S.E.Hasnain, Director, CDFD, Hyderabad

31.10.2002 Dr. Dilip Mahalanalis, Director, Society for App. Studies, Kolkata
Dr. S.P.Mukhopadhyay, Head, Indian Inst. of Scientist Welfare, Kolkata

22.11.2002 Dr. Rabindra Kumar Sinha, Univ. Prof. (Zoology), Patna University, Patna
Dr. M.Chaudhary, Chief Malaria Officer, Govt. of Bihar, Patna

20.02.2003 Dr. G.P.Ojha, Director, Epid. & Dis. Control, Ministry of Health, Nepal
Dr. R.K.Pokhral, Sr. P.H. Officer, Epid. & Dis. Control, Nepal
Dr. Ashok Sharma, Prog. Coordinator, Env. Health Project, Nepal
Workshops/Seminars/Conferences/Meetings held at the Institute

1. ICMR/TDR/WHO sponsored workshop of Investigators of Phase IV trial of Miltefosine for Treatment of Visceral leishmaniasis held at RMRIMS, Patna from 26th – 28th May, 2002.

3. A scientific meeting was organized regarding initiation of WHO/ One World Health/ICMR sponsored Phase III clinical Trial of Paromomycin and this meeting was attended by Dr. Micheal McGrath, Inst. for One World Health, San Francisco, USA on 25th Oct., 2002.

4. Dr. S.E.Hasnain, Director, Centre for DNA Fingerprinting & Diagnostics, Hyderabad addressed the scientists of this institute and delivered a scientific presentation about molecular tools in medical research on 26th Oct., 2002.

5. A clinical training of Kala-azar was organized for WHO fellows from Nepal on 20th Feb., 2003.
LIST OF STAFF MEMBERS

DIRECTOR

Dr. S.K. Bhattacharya,
M.D., F.N.A.Sc., F.N.A., F.A.M.S.

Division of Clinical Medicine

1. Dr. P.K. Sinha, M.D.
2. Dr. V. N. R. Das, M.B.B.S.
3. Dr. K. Pandey, M.D.
4. Dr. Nawin Kumar, M.D.
5. Dr. Neeraj Kumar, M.B.B.S.
6. Dr. (Mrs.) Vineeta Singh, M.B.B.S.
7. Mr. S.P. Singh
8. Mr. N. K. Sinha
9. Mr. S.B. Barman
10. Mr. Umesh Kumar
11. Smt. Pushpa Raj
12. Smt. S. Lakra
13. Smt. Geeta Kumari
14. Smt. Marry Shanti
15. Smt. Raina Sinha
16. Smt. Anita Kujur
17. Shri S. R. Sharma
18. Shri R.K. Singh
19. Mr. Ramparvesh Verma
20. Mr. Ajeet Kumar
21. Shri Ganga Prasad
22. Smt. Jhalkuri Devi
23. Smt. Madhuri Kumari
24. Smt. Kunti Devi
25. Smt. Baso Devi
26. Shri Shankar Kumar
27. Shri Rajendra Ram II
28. Shri Arjun Kumar

Division of Epidemiology

1. Dr. R.K. Topono, MBBS

Division of Pathology & Molecular Biology

1. Dr. (Mrs.) Neena Verma, M.D., D.C.P.
2. Mr. Dharmendra Singh, M.Sc.
3. Dr. Gaurav Verma, M.D.
4. Mr. R.N. Sah, M.Sc.
5. Mr. Devendra Prasad

Assistant Director & HOD
Senior Research Officer
Senior Research Officer
Research Officer
Senior Research Fellow
Senior Research Fellow
Technical Assistant
Technical Assistant
Laboratory Technician
Staff Nurse
Staff Nurse
Staff Nurse
Staff Nurse
Staff Nurse
Attendant
Peon
Attendant
Cook
Attendant
Dai
Attendant
Cook Attendant
Cook Attendant
Sweeper
Sweeper
Research Officer
Research Officer
Senior Research Fellow
Technical Assistant
Laboratory Attendant
6. Mr. Lal Bahadur Kumar Yadav Peon
7. Smt. Mehar Devi Sweepress

Division of Immunology
1. Dr. Sanjeev Bimal, Ph.D. Research Officer
2. Mr. Shubhankar Kr. Singh, M.Sc. Research Assistant
3. Mr. Arvind Prasad Technical Assistant
4. Shri Rajendra Prasad Attendant

Division of Biochemistry
1. Dr. C. S. Lal, Ph.D. Research Officer
2. Mr. Anil Kumar, M.Sc. Research Assistant
3. Mr. Sanjay Kumar, M.Sc. Research Assistant
4. Mr. S. N. Mehta Technical Assistant
5. Smt. Manjushree Roy Technical Assistant
6. Mr. Sudarshan Prasad Laboratory Assistant
7. Shri Ashok Kumar Singh Peon

Division of Microbiology
1. Mr. A. K. Gupta, M.Sc. Senior Research Officer
2. Mr. M. Muniaraj, M.Sc. Research Officer
3. Dr. Shyam Narayan, Ph.D. Research Officer
4. Mr. S. K. Chaturvedi Technical Assistant
5. Mr. S. Yadav Laboratory Assistant
6. Mr. S. K. Sinha Laboratory Assistant
7. Mr. Baidyanath Rai Laboratory Attendant
8. Mr. C. Prasad Peon
9. Mr. S. N. Thakur Attendant
10. Mr. Rajendra Ram Sweeper

Division of Animal House
1. Mr. R. B. Verma, B.Sc., PGDCA Technical Officer
2. Mr. M. P. Thakur Technical Assistant
3. Mr. Rambalak Sah Animal Attendant
4. Smt. Geeta Devi Animal Attendant
5. Mr. K. Chowdhary Animal Attendant
6. Mr. S. Paswan Animal Attendant
7. Mr. Madan Sah Animal Attendant
8. Mr. Dina Ram Sweeper

Division of Vector Biology & Control (Medical Entomology)
1. Dr. K. Kishore, Ph.D. Deputy Director & HOD
2. Dr. V. Kumar, Ph.D. Research Officer
3. Dr. S. Kesari, Ph.D. Research Officer
4. Dr. D. S. Dinesh, Ph.D. Research Officer
5. Mr. N. K. Sinha Technician
6. Mr. M. Prasad
 Technician
7. Mr. A. K. Mandal
 Insect Collector
8. Mr. S. A. Khan
 Field Assistant
9. Mr. B. Prasad
 Daftari
10. Smt. Girija Devi
 Sweepress

Division of Social Science

1. Mr. Narendra Kumar, M.A., Dip. in Pop.Std.
 Senior Research Officer
2. Shri Ramchandra Prasad
 Attendant

Division of Biostatistics & EDP

1. Mr. Alok Ranjan, M.Sc.(Stat.), MBA, PGDSD
 Research Officer
2. Dr. V. P. Singh, Ph.D.
 Sr. Technical Officer
3. Mr. N. A. Siddique, M.Sc.(Stat.), PGDCA
 Research Assistant

Library

1. Mr. B.K.Chowdhary, M.A., B.Lib.Sc.
 Assist. Lib. & Inf. Officer
 Lib. & Inf. Assistant
3. Shri Ragho Saran Singh
 Gestetner Operator
4. Smt. Saroj Devi
 Library Attendant
5. Shri Yogendra Sharma
 Attendant

General Administration

1. Mr. B.K.P.Thakur, M.A., S.A.S.(Def.Ser.)
 Admin. Officer
2. Mr. S.Kumar, B.A.
 Section Officer
3. Mr. Naresh Kumar, B.A.
 Section Officer
4. Mr. B.K. Prasad
 Section Officer
5. Mr. M.N.Sinha, B.Sc.(Engg.)
 Personal Assistant
6. Mr. M. Rahman
 Personal Assistant
7. Mr. M.M. Ansari
 Assistant
8. Mr. Z. Abuddin
 Assistant
9. Mr. S. K. Verma
 Assistant
10. Mr. K.M. Prasad
 Assistant
11. Mr. S.L. Marandi
 Hindi Translator
12. Mr. S.N. Rabidas
 Stenographer
13. Mrs. S.Kumari
 Stenographer
14. Mr. Arjun Kumar
 UDC
15. Mr. S.P. Sharma
 UDC
16. Mrs. Anita Kumari
 UDC
17. Mr. Ram Babu
 UDC
18. Mr. S.K. Ghosh
 LDC
19. Mr. R.D. Singh
 LDC
20. Mr. Alok Kumar
 Hindi Typist
21. Mr. Ramlakhan Prasad
 Daftari
22. Mr. Shyam Prasad
 Daftari
23. Mr. Raja Ram Yadav Daftari
24. Mr. Jitan Thakur Daftari
25. Mr. S. N. Ram Attendant
26. Mr. Balmiki Ram Peon
27. Mr. Ashok Kumar Peon
28. Mr. Manoj Kumar Peon
29. Mr. Ramsaran Mahto Peon
30. Mr. Sunil Kumar Hansda Peon
31. Mr. Ajay Kumar Cook-cum-Guest House Attendant
32. Mr. Rambrksha Mahto Mali (Gardener)
33. Mr. Mahendra Kumar Mali (Gardener)

Transport Section

1. Shri Rameshwar Paswan Driver
2. Shri F.Toppo Driver
3. Shri A. K. Singh Driver
4. Shri S. N. Sharma Driver
5. Shri Nageshwar Ram Vehicle Attendant

Workshop Section

1. Mr. N. N. Mishra Wireman
2. Mr. Jawahar Prasad Plumber
3. Mr. Suryadev Mistri Carpenter
4. Mr. Gopal Prasad Shrama Khalashi
5. Mr. Anirudha Prasad Helper
6. Mr. Ajit Kumar Helper

Security Section

1. Mr. Santosh Kumar Head Watchman
2. Mr. Anil Kumar Watchman
3. Mr. Ranjeet Kumar Watchman
4. Mr. B. Murmu Watchman
5. Mr. K. Chowdhary Watchman
6. Mr. V.N. Tiwari Watchman
7. Mr. U.S. Singh Watchman

Canteen Staff

1. Mr. Anil Kumar Prasad Canteen Manager
2. Mr. Baleshwar Prasad Halwai
3. Mr. Vijay Kumar Bearer
4. Mr. Kishun Mahto Bearer